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and nonzero brane F- and/or D-term for the uplifting potential, we have all the moduli

stabilized with a vanishing cosmological constant. The brane scalar with nonzero R charge
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1. Introduction

Supersymmetry(SUSY) [1] has been around us as one of the most promising candidates for

physics beyond the Standard Model. When the SUSY breaking occurs at the electroweak

scale, it can be a solution to the gauge hierarchy problem, thanks to the cancellation of the

quadratic divergences to the Higgs mass between the SM particles and their superpartners.

If the SUSY breaking is parametrized in terms of the soft mass parameters that respect

the SM gauge symmetry, over 100 additional parameters would lead to unacceptably large

FCNCs and CP violations. In gravity mediation [2] where the hidden sector SUSY breaking
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is transmitted to the visible sector by gravity only, the weak scale soft mass parameters can

be naturally generated. However, the almost flavor-universal soft masses are unexplained in

this context because one cannot forbid the flavor-dependent contact interactions between

the visible and hidden sectors by any known symmetry. Therefore, several alternative

mechanisms of SUSY mediation giving the flavor-universal soft masses have been suggested

and discovered: gauge mediation [3], anomaly mediation [4], gaugino mediation [5], etc.

For recent years, there have been a plenty of interest in the flux compactifications for

the SUSY phenomenology, in particular, in the context of the KKLT-type compactifica-

tions [6], due to the fact that fluxes combined with non-perturbative effect can fix all the

moduli of the extra dimensions endowed from string theory and the soft mass parameters

have a distinct pattern compared to the ones obtained in the other SUSY mediations, that

leads to the so called anomaly-modulus mixed mediation or the mirage mediation [7]. In

the present era that the Large Hadron Collider(LHC) is turning on soon, it is compelling

and very important to identify the distinguishable features of the reasonable and accessible

SUSY mediation mechanisms.

The model that we are considering is the Salam-Sezgin supergravity [8] where the

U(1)R subgroup of the bulk R symmetry is gauged by a bulk vector multiplet. Due to

the U(1)R gauging, there appears a nonzero positive scalar potential for the dilaton, in

contrast to the 5D gauged supergravity. In this model, due to the cancellation between

the dilaton potential and the U(1)R gauge flux, the 4D Minkowski space with factorizable

extra dimensions compactified on a sphere was obtained. The solution has been generalized

rather recently to the unwarped or warped 4D Minkowski solutions with nonzero brane

tensions [9 – 12], with the hope of achieving a self-tuning of the cosmological constant on

a codimension-two brane [13]. In this case, nonzero brane tensions need to be introduced

at the conical singularities that are caused by the deficit angles. The brane tensions are,

however, regarded as breaking the bulk SUSY explicitly at the action level. Therefore, most

recently, the SUSY action for the case with a brane tension has been constructed by adding

localized FI terms and localized corrections to the Chern-Simons term in the field strength

for the Kalb-Ramond field as well as by modifying the fermionic SUSY transformations [14].

Consequently, it has been shown that the unwarped football solution with arbitrary brane

tensions is a new SUSY background solution preserving the 4D N = 1 SUSY [14].

In this paper, by extending the previous result for the SUSY action for a brane tension

action of ref. [14], we first construct a consistent SUSY action in the presence of brane

multiplets in the Salam-Sezgin supergravity by following the Noether method undertaken

in 6D ungauged supergravity [15]. In this process, we need to add the localized terms

depending on the brane multiplets to the field strengths and modify the fermionic SUSY

transformations and the SUSY/gauge transformations of the Kalb-Ramond field. Conse-

quently, as in the ungauged supergravity [15], we find that the kinetic term for the brane

chiral multiplet has a nontrivial dilaton coupling while the gauge kinetic function for the

brane vector multiplet is trivial. Moreover, the brane-induced F- and D-terms have non-

trivial moduli couplings. When the brane chiral multiplet is charged under the U(1)R, we

also obtain a nontrivial coupling of the brane scalar to the gauge field strength as well as

a singular scalar self interaction.
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For the SUSY background solution with football-shaped extra dimensions, we consider

the low energy action with light bulk and brane modes in the 4D effective supergravity. The

U(1)R gauge symmetry appears anomalous as the bulk Green-Schwarz counterterm gener-

ates the 4D U(1)R anomalies for a nonzero gauge flux and a localized FI term. Moreover,

the bulk U(1)R vector multiplet gets a mass of order the 4D Planck scale by a Green-

Schwarz mechanism. From the effective U(1)R D-term potential, we have fixed only one of

two moduli, i.e. the T modulus, due to the interplay between the field-dependent and con-

stant U(1)R FI terms. By assuming that there appears an additional scalar potential due

to two bulk gaugino condensates generated below the compactification scale in an extend

bulk theory and consequently adding the brane F- and/or D-term as the uplifting potential,

we show that the remaining S modulus is also stabilized at the Minkowski vacuum. Due to

the shift of the VEV of the T modulus from the one obtained only by the U(1)R D-term,

we show that a brane scalar field with nonzero R charge can get a nonzero soft mass in

comparable size to the gravitino mass. We dub this new possibility “U(1)R mediation”.

The brane scalar soft mass does not depend on the U(1)R gauge coupling because the mass

of the U(1)R vector multiplet is also proportional to the U(1)R gauge coupling. The overall

sign of the soft mass depends on whether the brane F-term or D-term dominates.

The paper is organized as follows. We start with describing the bulk Salam-Sezgin su-

pergravity and then present the SUSY action for the chiral and vector multiplets living on

the conical branes and the brane-localized D- and F-terms with nontrivial moduli depen-

dence. Next we review on the recently found SUSY brane solution and continue to derive

the low energy effective action for light bulk and brane fields in the same SUSY brane

background to identify the corresponding 4D effective supergravity. We also discuss on the

moduli stabilization and the SUSY breaking in the presence of the bulk gaugino condensates

and nonzero brane F- and/or D-term uplifting potentials. Finally, the conclusion is drawn.

2. Model setup

The six-dimensional Salam-Sezgin supergravity [8] consists of gravity coupled to a dilaton

field φ, a Kalb-Ramond(KR) field BMN , along with the SUSY fermionic partners, the

gravitino ψM , the dilatino χ. Moreover, it also contains a bulk U(1)R vector multiplet

(AM , λ) that gauges the R-symmetry of six-dimensional supergravity. All the bulk fermions

are 6D Weyl.

The complete bulk Langrangian [8] is given (up to four fermion terms) by

e−1
6 Lbulk = R− 1

4
(∂Mφ)2 − 1

12
eφGMNPG

MNP − 1

4
e

1

2
φFMNF

MN − 8g2e−
1

2
φ

+ψ̄MΓMNPDNψP + χ̄ΓMDMχ+ λ̄ΓMDMλ

+
1

4
(∂Mφ)(ψ̄NΓMΓNχ+ χ̄ΓNΓMψN )

+
1

24
e

1

2
φGMNP (ψ̄RΓ[RΓMNPΓS]ψ

S + ψ̄RΓMNPΓRχ

−χ̄ΓRΓMNPψR − χ̄ΓMNPχ+ λ̄ΓMNPλ)

− 1

4
√

2
e

1

4
φFMN (ψ̄QΓMNΓQλ+ λ̄ΓQΓMNψQ + χ̄ΓMNλ− λ̄ΓMNχ)

+i
√

2ge−
1

4
φ(ψ̄MΓMλ+ λ̄ΓMψM − χ̄λ+ λ̄χ). (2.1)
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The field strengths of the gauge and Kalb-Ramond(KR) fields are defined as

FMN = ∂MAN − ∂NAN , (2.2)

GMNP = 3∂[MBNP ] +
3

2
F[MNAP ], (2.3)

and satisfy the Bianchi identities

∂[QFMN ] = 0, (2.4)

∂[QGMNP ] =
3

4
F[MNFQP ]. (2.5)

For δΛAM = ∂MΛ under the U(1)R, the field strength for the KR field is made gauge

invariant by allowing for BMN to transform as

δΛBMN = −1

2
ΛFMN . (2.6)

All the spinors have the same R charge +1, so the covariant derivative of the gravitino, for

instance, is given by

DMψN = (∂M +
1

4
ωMABΓAB − igAM )ψN . (2.7)

The local N = 2 SUSY transformations are (up to trilinear fermion terms):

δeAM = −1

4
ε̄ΓAψM + h.c., (2.8)

δφ =
1

2
ε̄χ+ h.c., (2.9)

δBMN = A[MδAN ] +
1

4
e−

1

2
φ(ε̄ΓMψN − ε̄ΓNψM + ε̄ΓMNχ+ h.c.), (2.10)

δχ = −1

4
(∂Mφ)ΓMε+

1

24
e

1

2
φGMNPΓMNP ε, (2.11)

δψM = DMε+
1

48
e

1

2
φGPQRΓPQRΓMε, (2.12)

δAM =
1

2
√

2
e−

1

4
φ(ε̄ΓMλ+ h.c.), (2.13)

δλ =
1

4
√

2
e

1

4
φFMNΓMNε− i

√
2g e−

1

4
φε. (2.14)

The above spinors are chiral with handednesses

Γ7ψM = +ψM , Γ7χ = −χ, Γ7λ = +λ, Γ7ε = +ε. (2.15)

Taking into account that Γ7 = σ3 ⊗1 (see appendix A), the 6D (8-component) spinors can

be decomposed to 6D Weyl (4-component) spinors as

ψM = (ψ̃M , 0)
T , χ = (0, χ̃)T , λ = (λ̃, 0)T , ε = (ε̃, 0)T . (2.16)

For later use, we decompose the 6D Weyl spinor ψ̃ to ψ̃ = (ψ̃L, ψ̃R)T , satisfying γ5(ψ̃L, 0)
T =

+(ψ̃L, 0)
T and γ5(0, ψ̃R)T = −(0, ψ̃R)T . Henceforth we drop the tildes for simplicity.
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We can show that the action for the Lagrangian (2.1) is invariant under the above SUSY

transformations up to the trilinear fermion terms and the Bianchi identities as follows,

δLbulk = e6

[

− 1

24
e

1

2
φ

(

∂SGMNP − 3

4
FMNFSP

)

(

ψ̄RΓRMNPSε− χ̄ΓSMNP ε+ h.c.
)

+
1

4
√

2
e

1

4
φ
(

∂QFMN λ̄ΓQMNε+ h.c.
)

]

. (2.17)

Thus, as will be seen later, the SUSY variation of the brane action can be cancelled with

the bulk variation (2.17) by modifying the Bianchi identities (2.4) and (2.5).

3. Supersymmetric codimension-two brane actions

We introduce a chiral multiplet with nonzero R-charge and a vector multiplet on the

brane. Then, by adopting the Noether method, we construct a consistent SUSY action

for the brane multiplets that is invariant under the modified bulk SUSY variations. As

a result, we show that the brane multiplets have nontrivial couplings to the bulk fields

through the modified field strengths. We also consider a supersymmetric brane-localized

gravitino mass term.

3.1 The Z2 orbifold parities

In order to project out half the bulk supersymmetries on the brane and define an N = 1

brane SUSY, we assume an orbifold Z2 symmetry around each brane. If the local complex

coordinate around the brane is z (in locally polar coordinates z = reiθ), then the Z2

symmetry corresponds to

z ↔ −z (or θ ↔ θ + π). (3.1)

In the case with two branes system, the warped vacua of [11] have an axially symmetric

internal space. The above Z2 symmetry about both branes present, is just a discrete

subgroup of the axial symmetry. On the other hand, for the general warped solutions with

multiple branes [12], we require the holomorphic function V (z) in the metric to satisfy the

condition |V (−z + zi)| = |V (z − zi)|, where zi is the i-th brane position.

We should then assign Z2 parities to all bulk fields as well as the SUSY variation

parameters εL and εR. Being consistent with the bulk action and the SUSY transformation,

we make a choice of parities for the fields and the SUSY variation parameter as

even : ψαL, ψaR, λL, χR, εL, Aα, Bαβ , Bab, φ, (3.2)

odd : ψαR, ψaL, λR, χL, εR, Aa, Bαa. (3.3)

where the gauge field, the Kalb-Ramond field and the gravitino have been written with

locally flat indices, e.g., AA = e M
A AM , so that the parity assignments do not depend on

the coordinate system. It is obvious that the above choice of parities forces εR to vanish

on the brane position. Henceforth we denote the 4D Weyl spinor of each bulk fermion

surviving on the brane by λ+ and ε+, etc, satisfying γ5λ+ = λ+ and γ5ε+ = ε+, etc.

– 5 –
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3.2 The supersymmetric action for brane multiplets

We consider a nonzero brane tension as well as brane matter multiplets: a brane chiral

multiplet1 (Q,ψQ), the superfield of which has an R charge −r, and a brane vector multiplet

(Wµ,Λ). Then, by employing the Noether method for the local SUSY, we find that the

supersymmetric action for the bulk-brane system (up to four fermion terms) is composed of

the original bulk action (2.1) with the field strength tensors GMNP and FMN being replaced

by the modified ones ĜMNP and F̂MN , respectively, and the brane action as follows,

L = Lbulk(G→ Ĝ, F → F̂ ) + δ2(y)Lbrane (3.4)

with

Lbrane = e4

[

e
1

2
φ
(

− (DµQ)†DµQ+
1

2
ψ̄Qγ

µDµψQ + h.c.
)

+
√

2irge
1

4
φψ̄Qλ+Q+ h.c.− 4rg2|Q|2 − T

+e
1

2
φ

(

1

2
ψ̄µ+γ

νγµψQ(DνQ)† +
1

2
ψ̄Qγ

µχ+DµQ+ h.c.

)

−1

4
WµνW

µν +
1

2
Λ̄γµDµΛ + h.c.

−ie
√

2e
1

2
φQψ̄QΛ + h.c.− 1

2
e2|Q|4eφ

− 1

4
√

2
Λ̄γµγνρψµ+Wνρ −

i

2
√

2
e|Q|2e 1

2
φΛ̄γµψµ+ + h.c.

− i√
2
e|Q|2e 1

2
φχ̄+Λ + h.c.

]

. (3.5)

The SUSY transformations of the brane chiral multiplet are

δQ =
1

2
ε̄+ψQ, δψQ = −1

2
γµε+DµQ. (3.6)

On the other hand, the SUSY transformations of the brane vector multiplet are

δWµ =
1

2
√

2
ε̄+γµΛ + h.c., (3.7)

δΛ =
1

4
√

2
γµνε+Wµν +

i

2
√

2
e|Q|2e 1

2
φε+. (3.8)

Here the brane gauge field strength is Wµν = ∂µWν − ∂νWµ and the covariant derivatives

of the brane multiplets are

DµQ = (∂µ + irgAµ − ieWµ)Q, (3.9)

DµψQ = (∂µ + i(r − 1)gAµ − ieWµ +
1

4
ωµαβγ

αβ)ψQ, (3.10)

DµΛ = (∂µ − igAµ +
1

4
ωµαβγ

αβ)Λ. (3.11)

1The 4D chirality of the fermion in the brane chiral multiplet is taken to be right-handed in contrast to

the Z2-even gravitino and the Z2-even gaugino and the brane gaugino. So, the conventional chiral superfield

containing a left-handed fermion, (Q∗, (ψQ)c), should have an opposite R charge, namely, r for Q∗ and r−1

for (ψQ)c.
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We note that the R charges of the component fields in the brane chiral multiplet are

different by +1 as known to be the case in 4D local SUSY [18]. The gaugino of a brane

vector multiplet also has the same R charge +1 as the bulk gravitino.

The modified field strength tensors are

Ĝµmn = Gµmn +
(

Jµ − ξAµ

)

ǫmn
δ2(y)

e2
, (3.12)

Ĝτρσ = Gτρσ + Jτρσ
δ2(y)

e2
, (3.13)

F̂mn = Fmn − (rg|Q|2 + ξ)ǫmn
δ2(y)

e2
(3.14)

where ξ = T
4g is the localized FI term, ǫmn is the 2D volume form and

Jµ =
1

2
i

[

Q†DµQ− (DµQ)†Q+
1

2
ψ̄QγµψQ − 1

2
e−

1

2
φΛ̄γµΛ

]

, (3.15)

Jτρσ = −1

4
ψ̄QγτρσψQ − 1

8
e−

1

2
φΛ̄γτρσΛ. (3.16)

Here in order to cancel the variation of the brane tension action [14], we needed to modify

the gauge field strength with the localized FI term2 proportional to the brane tension.

Moreover, the modified field strength for the KR field contains a gauge non-invariant piece

proportional to the localized FI term so the gauge transformation of the KR field needs to

be modified to

δΛBmn = Λ

(

− 1

2
Fmn + ξǫmn

δ2(y)

e2

)

. (3.17)

On the other hand, the SUSY transformations of the bulk fields are the same as eqs. (2.8)–

(2.14) with GMNP and FMN being replaced by ĜMNP and F̂MN , respectively, and the

gauge field AM being kept the same as in the no-brane case, with an exception that the

SUSY transformation of the extra components of the KR field has an additional term as

δBmn =
1

4
iψ̄Qε+Qǫmn

δ2(y)

e2
+ h.c.. (3.18)

Furthermore, for the modified field strength tensors, we obtain the Bianchi identities as

follows,

∂[µĜνmn] =
3

4
F̂[µν F̂mn] +

[

i

2
(D[µQ)†(Dν]Q) +

1

4
e|Q|2Wµν

]

ǫmn
δ2(y)

e2
, (3.19)

∂[µF̂mn] = −1

3
rg∂µ|Q|2ǫmn

δ2(y)

e2
. (3.20)

Then, by using eq. (2.17) with the modified Bianchi identities (3.19) and (3.20), we are

able to cancel all the remaining variations of the brane action given in eq. (3.5).

We can extend the result to the more general case with multiple branes. When all

the branes preserve the same 4D N = 1 SUSY, we only have to replace the delta terms

appearing in the action and the SUSY/gauge transformations: Tδ2(y) with
∑

i Tiδ
2(y−yi),

and f(Q)δ2(y) with
∑

i f(Qi)δ
2(y − yi).

2See ref. [20] for discussion on the FI term in 5D gauged supergravity.
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3.3 The brane-localized gravitino mass

We introduce a gravitino mass term on the brane. Then, the brane action is supplemented

by the supersymmetric gravitino mass terms as

Lgmass = −e4
1

2
W0e

1

2
ψ(ψ̄µ+γ

µνCψ̄Tν+ + ψ̄1γ
µCψ̄Tµ+ + ψ̄2γ

µCψ̄Tµ+ + λ̄+Cλ̄
T
+) + h.c. (3.21)

where W0 is a constant parameter and

ψ1 = ψ5+ + iψ6+, ψ2 = ψ5+ − iψ6+. (3.22)

We also need to modify the SUSY transformations of the extra components of the gravitino

as follows,

δψ+ = W0e
1

2
ψCε̄T+

δ2(y)

e2
, (3.23)

δψ− = −W0e
1

2
ψCε̄T+

δ2(y)

e2
. (3.24)

Here eψ is the volume modulus of the extra dimensions. Thus, similarly to the ungauged

supergravity [15], the brane gravitino mass has a nontrivial coupling to the volume modulus

of the extra dimensions. Under the modified gravitino variations (3.23) and (3.24), the

variation of the bulk gravitino linear terms would have induced singular terms for a nonzero

background gauge flux. So, in order to cancel them, we needed to introduce the brane-

localized gaugino mass, which is the same as the gravitino mass. When the superpotential

depends on the brane chiral multiplets, we can infer the form of the brane F-term as

LF = −e4eψ−
1

2
φ|FQ|2 (3.25)

with FQ = ∂W
∂Q . Consequently, similarly to the ungauged supergravity case [15], we show

that the F-term has a nontrivial coupling to the dilaton as well as the volume modulus.

4. The supersymmetric brane solution

In the presence of the modification in the gauge field strength in eq. (3.14), the general

warped solution obtained in ref. [11, 10, 12] is maintained up to the modified solution for

the gauge field [14]. On the other hand, when the KR field and the 4D component of

the gauge field are set to zero, the modified field strength for the KR field in eqs. (3.12)

and (3.13) does not affect the equations of motion.

Assuming the axial symmetry in the internal space, it has been found that the general

warped solution with 4D Minkowski space takes the following form [11, 14],

ds2 = W 2(r)ηµνdx
µdxν +R2(r)

(

dr2 + λ2Θ2(r)dθ2

)

, (4.1)

F̂mn = qǫmn, (4.2)

φ = 4 lnW, (4.3)

– 8 –
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with

R =
W

f0
, Θ =

r

W 4
, (4.4)

W 4 =
f1

f0
, f0 = 1 +

r2

r20
, f1 = 1 +

r2

r21
, (4.5)

where q is a constant denoting the magnetic flux, and the two radii r0, r1 are given by

r20 =
1

2g2
, r21 =

8

q2
. (4.6)

In the warped solution, the metric has two conical singularities, one at r = 0 and the

other at r = ∞, which is at finite proper distance from the former one. The singular terms

coming from the deficit angles δi at these singularities need to be compensated by brane

tensions Ti = 2δi(i = 1, 2) with the following matching conditions,

δ1
2π

= 1 − λ, (4.7)

δ2
2π

= 1 − λ
r21
r20
. (4.8)

Moreover, when the brane actions are invariant under the same 4D N = 1, the modified

gauge field strength has two singular terms proportional to the brane tensions at the conical

singularities,

F̂mn = Fmn − ǫmnξi
δ2(y − yi)

e2
(4.9)

with ξi = Ti

4g for i = 1, 2.

We need two patches of coordinates to cover the whole bulk space. In the patch

including r = 0, the solution of the only non-zero component of the gauge field is

Aθ = −4λ

q

(

1

f1
− 1

)

+
ξ1
2π
. (4.10)

Likewise, the gauge potential in the patch surrounding r = ∞ is

Aθ = −4λ

q

1

f1
− ξ2

2π
. (4.11)

Hence, after connecting the gauge field solutions in two patches by a gauge transformation

and requiring that it is single valued under 2π rotations, we find the following quantization

condition should hold
4λg

q
= n− g

2π
(ξ1 + ξ2), n ∈ Z. (4.12)

In other words, we find that the FI terms fix the Wilson line phases of the gauge potential

to be non-vanishing on the branes and can contribute to the quantization condition for

ξ1 + ξ2 6= 0, i.e., when T1 + T2 6= 0. This result can be regarded as a generalization of

the 6D global SUSY case discussed in ref. [27] to the case with nonzero bulk gauge flux.
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Using the flux quantization (4.12) with eqs. (4.7) and (4.8), we obtain the brane tensions

are related as
(

1 − T1

4π

)(

1 − T2

4π

)

=

[

n− g

2π
(ξ1 + ξ2)

]2

. (4.13)

In particular, in the unwarped limit, i.e., for r0 = r1, the solution becomes the football

solution with two equal brane tensions T1 = T2 = 4π(1 − λ). Then, since q = 4g and

ξ1 = ξ2 = π
g (1 − λ), the quantization condition (4.12) is satisfied for n = 1 and arbitrary

λ. Thus, for 0 < λ < 1, brane tensions can be arbitrary and positive. This is a remarkable

result, as compared to the non-SUSY brane tension action [9] where the brane tensions are

always negative because λ is quantized as a natural number.

Moreover, unlike the general warped solution which breaks SUSY completely, it has

been shown [14] that for any λ, the football solution preserves 4D N = 1 SUSY. For

completeness, we add a brief discussion on this result given in ref. [14] in order. In the

patch surrounding the brane at r = 0, the nontrivial fermionic SUSY transformations are

δλ = i
√

2g(γ5 − 1)ε, (4.14)

δψθ =

[

∂θ +
i

2

{

1 + λ

(

1 − 2

f0

)}

γ5 + iλ

(

1

f0
− 1

)

− i
gξ0
2π

]

ε

=

[

∂θ +
i

2

{

1 + λ

(

1 − 2

f0

)}

(γ5 − 1)

]

ε, (4.15)

where use is made of gξ0 = 1
4T0 = π(1 − λ) from eq. (4.7) in the last line. Then, for a

non-zero left-handed variation parameter ε+, for which the gaugino variation is manifestly

zero, the remaining nonzero gravitino variation is δψθ+ = ∂θε+. So, for any λ, i.e. any

brane tension, there exists a constant 4D left-handed Killing spinor ε+. Therefore, we can

see that the modified gauge potential is crucial for maintaining the 4D N = 1 SUSY even

in the presence of arbitrary brane tensions. It has been also shown that there appears

a single chiral massless mode of gravitino for positive brane tensions on the football [14],

while there are multiple massless modes of gravitino possible in the case with the non-SUSY

brane tension action [16].

5. The 4D effective action

We consider the low energy effective action containing light bulk and brane fields after the

extra dimensions are compactified on a football. We show that the resulting 4D effective

action can be described by a 4D supergravity with the specific form of the Kähler potential

containing a constant U(1)R FI term, the gauge kinetic functions and the effective super-

potential from the branes. We discuss on the effect of the bulk Green-Schwarz term on the

4D anomalies.

5.1 The tree-level effective action

To make a KK dimensional reduction to 4D for the supersymmetric brane solution, we
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take the separable ansatz for the 6D metric3 as

ds2 = e−ψ(x)gµν(x)dx
µdxν + eψ(x)ds22 (5.1)

where ds22 is the 2D metric of the football solution and ψ is the volume modulus.

By integrating the supersymmetric bulk-brane system (3.4) over the extra dimensions

with eqs. (C.19) and (C.25), the 4D effective action for the bosonic fields apart from the

brane F- and D-terms can be obtained as

Lboson =
1

2
M4

∗ e4

∫

d2ye2

[

R(g)−(∂µψ)2− 1

4
(∂µf)2− 1

2
eψ+ 1

2
fM−4

∗ FµνF
µν− 1

2
e2ψ+f (Gµνρ)

2

−1

2
e−2ψ+f

(

∂µb−
2q

M4
∗

Aµ −
i

M2
P

(Q†DµQ− (DµQ)†Q)

)2

−M−4
∗ e−3ψ+ 1

2
f

(

q − rg

V
|Q|2

)2

− 4g2M4
∗ (−2e−2ψ + e−ψ−

1

2
f )

]

+e4

[

− e−ψ+ 1

2
f (DµQ)†(DµQ) − 1

4
WµνW

µν − 2rg2M4
∗ e

−2ψ |Q|2
]

(5.2)

where q = 2gM4
∗ . Here we have recovered the 6D fundamental scale M∗ that was taken to

be M4
∗ = 2.

We redefine the scalar fields as the mixture of the dilaton and the volume modulus as

s = eψ+ 1

2
f , t = eψ−

1

2
f . (5.3)

We also dualize the 4D component field strength for the KR field as efGµνρ = ǫµνρτ∂
τσ.

The effective action (5.2) then becomes

Lboson = M2
P

√−g
[

1

2
R(g) − (∂µs)

2

4s2
− (∂µt)

2

4t2

− 1

4M2
P

sFµνF
µν − 1

M2
P t

(DµQ)†(DµQ) − 1

4M2
P

WµνW
µν

−(∂µσ)2

4s2
− 1

4t2

(

∂µb− 4gRAµ −
i

M2
P

(Q†DµQ− (DµQ)†Q)

)2

−2g2
RM

2
P

s

{

1 − 1

t

(

1 − r

2M2
P

|Q|2
)}2]

. (5.4)

Here the 4D Planck scale is given by M2
P = M4

∗V with the volume of the extra dimensions

V = λπr20, and the covariant derivative for the brane scalar is given by DµQ = (∂µ +

irgRAµ − ieWµ)Q with the 4D effective U(1)R gauge coupling gR = g/
√
V . Here we can

see that the U(1)R gauge boson gets a nonzero mass, M2
A = 8g2

RM
2
P , by a Green-Schwarz

mechanism due to the nonzero gauge flux.

We now find that the bosonic effective action (5.4) corresponds to the 4D supergravity

action with the Kähler potential4 K containing a constant U(1)R FI term, the gauge kinetic

3We set the shape modulus to zero, i.e. ξ = ψ in the general metric ansatz in the appendix B, because

the shape modulus is massive [21].
4For simplicity, we omitted the coupling of the brane vector multiplet to the brane chiral multiplet. It

can be implemented by replacing e−2rgRVR in eq. (5.5) with e−2rgRVR+2eVW .
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functions for the bulk and brane vector multiplets, fR and fW :

K = − ln

(

1

2
(S + S†)

)

− ln

(

1

2
(T + T † − δGSVR) − 1

M2
P

Q̃†e−2rgRVRQ̃

)

− 2ξR
M2
P

VR,(5.5)

fR = S, fW = 1 (5.6)

where the scalar components of the moduli supermultiplets are given by

S = s+ iσ, T = t+
1

M2
P

|Q|2 + ib. (5.7)

Here the Green-Schwarz parameter is δGS = 8gR and the constant FI term coefficient

is related to the Green-Schwarz parameter by ξR = 1
4δGSM

2
P . We note that the chiral

superfield Q̃ contains the component fields, (Q∗, ψcQ). The nonzero scalar potential in the

effective action (5.4) corresponds to the U(1)R D-term in the 4D effective supergravity.

We can also see that the U(1)R gauge kinetic function fR has a nontrivial S modulus

dependence while the gauge kinetic function fW for the brane vector multiplet is trivial.

After making the gravitino kinetic term canonical in the KK reduction to 4D, the

effective 4D gravitino mass becomes

Lgmass = −e4
1

2
W0e

−ψψ̄µ+γ
µνCψ̄Tν+ + h.c.. (5.8)

Compared to the gravitino mass in 4D supergravity, Lm = −e4 1
2e
K/2Wψ̄µ+γ

µνCψ̄Tν++h.c.,

the effective superpotential is independent of the moduli:

W = W0. (5.9)

We note that U(1)R gauge invariance requires the superpotential to take an R charge +2

as the gravitino ψµ+ has an R charge +1.

We can easily generalize the results to the case when the brane matter is present at

the other brane. The 4D effective supergravity is then described by

K = − ln

(

1

2
(S + S†)

)

− ln

(

1

2
(T + T † − δGSVR) − 1

M2
P

∑

i=1,2

Q̃†
ie

−2rigRVRQ̃i

)

− 2ξR
M2
P

VR, (5.10)

W =
∑

i=1,2

Wi(Q̃i) (5.11)

where the scalar component of the T modulus is generalized to

T = t+
1

M2
P

∑

i=1,2

|Qi|2 + ib. (5.12)

Therefore, the scalar potential takes a more general form as

V0 =
2g2
RM

4
P

s

[

1 − 1

t

{

1 − 1

2M2
P

(

∑

i=1,2

ri|Qi|2
)}]2

. (5.13)
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For a more general Kähler potential for the brane chiral multiplet Ωi(Q̃
†
ie

−2rgRVRQ̃i), we

have to replace the scalar component of the T modulus and the Kähler potential, respec-

tively, by

T = t+
∑

i=1,2

Ωi(|Qi|2) + ib (5.14)

and

K = − ln

(

1

2
(S + S†)

)

− ln

(

1

2
(T + T † − δGSVR) −

∑

i=1,2

Ωi(Q̃
†
ie

−2rigRVRQ̃i)

)

− 2ξR
M2
P

VR. (5.15)

5.2 The U(1)R gauge transformations

The brane chiral multiplet Q̃ having an R charge r transforms under the U(1)R with

parameter Φ (where ReΦ|θ=θ̄=0 = ΛR) as

Q̃→ eirgRΦQ̃ (5.16)

while the U(1)R vector multiplet transforms as

VR → VR +
i

2
(Φ − Φ†). (5.17)

Gauge invariance of the T -dependent piece of the Kähler potential (5.5) requires that,

under the U(1)R gauge transformation, the T modulus transforms nonlinearly as

T → T +
i

2
δGSΦ. (5.18)

This results in a shift of the axion field, b→ b+ 1
2δGSΛR = b+ 4gRΛR. This is consistent

with the globally well-defined KR field [22], given in eq. (C.2), Bmn = −bǫmn, that has

a gauge transformation, δBmn = −Λ〈F̂mn〉 = −2qM−4
∗ Λǫmn with Λ = ΛR/

√
V . On the

other hand, the S modulus does not transform under the U(1)R.

The constant U(1)R FI term appearing in the Kähler potential (5.5) causes the Kähler

potential to transform under the U(1)R as

K → K − i
ξR
M2
P

(Φ − Φ†). (5.19)

So, the Kähler potential transforms exactly like an abelian vector superfield. In the global

SUSY case, such a variation of the Kähler potential would maintain the invariance of the

action after the superspace integral. In the local SUSY case, however, the action would not

be invariant unless the Weyl rescaling invariance of the supergravity is supersymmetric.

In the Weyl compensator formalism [17], the super-Weyl symmetry is manifest due to the

chiral compensator superfield. In this case, the 4D supergravity action is written in the

superspace form as

S =

∫

d4x

[

d4θE(−3C†C e−K/3) +
(

∫

d2θ EC3W + h.c.
)

]

(5.20)
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where E is the full superspace measure, E is the chiral superspace measure and C is the

chiral compensator superfield. The above action (5.20) is super-Weyl invariant under the

following transformations,

E → e2τ+2τ̄ E, E → e6τE , (5.21)

C → e−2τC, W →W (5.22)

with a complex parameter τ . On the other hand, we can show that together with eq. (5.19),

the action is also invariant under the U(1)R transformations,

C → e
−i

ξR

3M2
P

Φ
C, (5.23)

W → e
i

ξR

M2
P

Φ
W. (5.24)

Thus, since eiξRΦ/M2
P = e2igRΦ, the effective superpotential takes an R charge +2, as

well known in the 4D supergravity with the gauged U(1)R [18, 19]. When we choose the

super-Weyl gauge C = 1 + θ2FC for manifest SUSY and holomorphicity, combining the

U(1)R transformation and a super-Weyl transformation with τ = −i ξR
6M2

P

Φ maintains the

super-Weyl gauge while making the superspace action (5.20) gauge invariant. Then, the

accompanying super-Weyl transform of the superspace measure E and E means that the

gravitino transforms under the U(1)R.

5.3 The bulk Green-Schwarz term and the 4D anomalies

In order to cancel the reducible bulk anomalies, it is necessary to introduce a Green-

Schwarz(GS) term [23 – 25] as follows,

LGS = −kvB ∧
(

tr(R ∧R) − ṽF ∧ F
)

(5.25)

with the extended gauge transformation of the KR field, δB = −1
2ΛF +ω1

L/v, where δω1
L =

dωL with ωL being the gravitational Chern-Simons(CS) form5 satisfying dωL = trR ∧ R.

Gauge invariance would require to modify the field strength as G = dB + 1
2F ∧A− ωL/v.

Here k, v, ṽ are calculable for the given bulk fermion content.

From eq. (C.2), we can rewrite the KR field in terms of the globally well-defined one as

B = B + 1
2〈A〉 ∧A. Then, under the gauge transformations, δΛB = −Λ〈F̂ 〉 and δΛA = dΛ,

the bulk Green-Schwarz term transforms

δΛLGS = −kv
(

− Λ〈F̂ 〉 +
1

2
〈A〉 ∧ dΛ

)

∧
(

tr(R ∧R) − ṽF ∧ F
)

. (5.26)

When we focus on the gauge part, the gauge variation of the Green-Schwarz term becomes

δΛLGS = −kvṽ
[

1

2
Λ〈F̂ 〉 ∧ F ∧ F +

(

Λ〈A〉 ∧ F ∧ F
∣

∣

∣

r=∞
− Λ〈A〉 ∧ F ∧ F

∣

∣

∣

r=0

)

]

(5.27)

5Since the GS term and the necessary addition of the gravitational CS term are not invariant under the

SUSY transformations, we would need to add more terms in the bulk action. However, considering the

complete SUSY action with them is beyond the scope of the paper.
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where use is made of eqs. (4.9), (4.10) and (4.11). The first term is a bulk term giving

rise to the 4D anomalies induced by the gauge flux. It is also present in the Salam-Sezgin

vacuum [8] without brane tensions where there appear 4D chiral massless modes of the

bulk fermions even without orbifold projections. On the other hand, the last two terms

correspond to the variation of the effective Chern-Simons action [26]. Since 〈A〉 does

not vanish at the branes due to the localized FI terms, they generate the U(1)R gauge

anomalies on the boundaries, r = 0 and r = ∞. The U(1)R-mixed gravitational anomalies

are also induced both in the bulk and on the boundaries in a similar fashion. Since the

localized anomalies are proportional to the arbitrary localized FI terms, in order to cancel

the localized anomalies, we need to introduce R charged fermions on the branes. However,

since the localized anomalies are restrictive, i.e. the U(1)R-mixed gravitational anomalies

are proportional to the gauge anomalies depending on the bulk fermion content via ṽ, the

brane fermion content should be constrained unless there are additional localized Green-

Schwarz terms [27]. The U(1)R anomaly cancellation with/without the Green-Schwarz

term has been discussed in 4D supergravity context [28].

6. Modulus stabilization and U(1)R mediation

Although the 4D scalar potential stabilizes one of the moduli, the T modulus, due to a

nonzero U(1)R D-term, the remaining S modulus needs to be fixed too. We consider a

possibility of having the S modulus stabilized by a S-dependent superpotential due to the

bulk gaugino condensates. Then, introducing a brane F-term and/or a brane D-term as

the uplifting potential, we can have all the moduli stabilized at the Minkowski vacuum.

Consequently, due to the shift of the T modulus from the value determined only by the

U(1)R D-term, we show that the brane scalar gets a nonzero soft mass which is proportional

to the R charge of the brane chiral multiplet. We call this kind of mechanism of generating

the soft mass “U(1)R mediation”.

6.1 Modulus stabilization

From the effective action (5.4), we can read the 4D effective scalar potential as

V0 =
2g2
RM

4
P

s

[

1 − 1

t

(

1 − r

2M2
P

|Q|2
)]2

. (6.1)

So, we find that the minimum of the potential occurs at t = 1 and |Q| = 0. Then, at this

minimum, the tree-level brane scalar mass vanishes. This is due to the cancellation between

the tree-level brane-localized scalar mass term and the flux-induced mass term. Moreover,

we note that the vacuum energy at the minimum vanishes without SUSY breakdown. Since

the value of the S modulus is not determined, however, there should be additional potential

terms that arise in stabilizing the S modulus by some other mechanism.

In order to stabilize the S modulus, we assume that the bulk non-perturbative dy-

namics generates a modulus potential with S-dependent superpotential W (S). Then, the
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additional contribution to the 4D scalar potential is

V1 =
eK

M2
P

[

∣

∣

∣

∂W

∂S
+
∂K

∂S
W
∣

∣

∣

2
K−1
SS† − 2|W |2

]

=
1

M2
P st

[

(S + S†)2
∣

∣

∣

∂W

∂S
− 1

S + S†
W
∣

∣

∣

2
− 2|W |2

]

. (6.2)

The extremum conditions for the total scalar potential V = V0 + V1, ∂SV = 0, ∂TV = 0

and ∂QV = 0, are solved approximately6 by t ≃ 1, Q = 0 and S solving FS ≃ 0.

For instance, we can consider double gaugino condensates [29] in an extended bulk

theory with anomaly-free non-abelian gauge groups.7 In this case, assuming that the U(1)R
symmetry is broken spontaneously by the VEV of the R charged scalars, the superpotential

takes a racetrack form [31]

W (S) = Λ1e
−β1S − Λ2e

−β2S . (6.3)

Here we ignored a possible modification to the gauge kinetic function due to the supersym-

metric completion of the Green-Schwarz term (5.26) and assumed that Λ1 and Λ2 have the

R charge +2 due to the presence of matter fields [33]. This is in contrast to the fact that

the double gaugino condensates are not possible being consistent with the global U(1)R in

the heterotic string [32] where the S modulus is shifted by an imaginary amount under the

U(1)R. The matter fields charged under the condensing gauge groups could give additional

contributions to the U(1)R D-term but we assumed that an extra singlet having an opposite

R charge to the matter fields cancels those contributions.

Then, we find that the FS = 0 condition is

Λ1e
−β1S(1 + β1(S + S†)) = Λ2e

−β2S(1 + β2(S + S†)). (6.4)

This fixes both ReS and ImS. When the beta functions of the two condensing gauge

groups are similar, |β1 − β2| ≪ β1, the solution to eq. (6.4) occurs at a large ReS where

the superpotential description with eq. (6.3) is reliable.

6.2 Uplifting and soft masses

After fixing the S modulus, however, the vacuum energy becomes nonzero and negative.

Therefore, we need to uplift the vacuum energy to zero. To this purpose, from the 4D

reduction of eq. (3.25), we derive a F-term potential at the hidden brane as

V2 =
1

s
|FQ′ |2. (6.5)

Instead of the brane F-term, from the 4D reduction of the brane D-term in eq. (3.4), we

can consider a D-term potential at the hidden brane as the uplifting potential,

V3 =
1

2t2
D2. (6.6)

6Because of the T dependence of the scalar potential coming from the gaugino condensates, the minimum

value of t is shifted from t = 1. Moreover, due to the S dependence of the U(1)R D-term, the minimum

value of s is also shifted compared to the one determined only by V1.
7See ref. [30] for some anomaly-free models containing U(1)R.
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For generalities, including both brane F- and D-terms for the uplifting potential, the

full 4D scalar potential becomes

V = V0 + V1 + V2 + V3

=
2g2
RM

4
P

s

[

1 − 1

t

(

1 − r

2M2
P

|Q|2
)]2

+
1

M2
P st

[

(S + S†)2
∣

∣

∣

∣

∂W

∂S
− 1

S + S†
W
∣

∣

∣

2
− 2|W |2

]

+
1

2t2
D2 +

1

s
|FQ′ |2. (6.7)

Then, ∂QV = 0 is satisfied for Q = 0, which is the minimum for r(t− 1) > 0. In the case

with Q = 0, the remaining extremum conditions, ∂SV = 0 and ∂TV = 0, are

0 = − 4g2
RM

4
P

(S + S†)2

(

1 − 1

t

)2

− 2

(S + S†)2
|FQ′ |2

+
2

M2
P t

∂

∂S

{

1

S + S†

[

(S + S†)2
∣

∣

∣

∂W

∂s
− 1

S + S†
W
∣

∣

∣

2
− 2|W |2

]}

, (6.8)

0 =
4g2
RM

4
P

st2

(

1 − 1

t

)

− 1

t3
D2 − 1

M2
P st

2

[

(S + S†)2
∣

∣

∣

∂W

∂S
− 1

S + S†
W
∣

∣

∣

2
− 2|W |2

]

.(6.9)

Compared to the case without the uplifting potential, from eq. (6.9), the T modulus is

shifted to

t =
1 + 1

2αD
2

1 − 1
2αtV1

(6.10)

where α ≡ s
2g2

R
M4

P

and V1 is the scalar potential coming from the gaugino condensates.

Thus, we note that the F-term at the hidden brane does not contribute directly to the shift

of the T modulus because it is independent of the T modulus. On the other hand, the S

modulus is also determined from eq. (6.8) for the fixed t. We take the vacuum energy to

be zero by choosing the brane D-term as

D2 =

−2tV1

(

1 − 1
4αtV1

)

− 2
s |FQ′ |2

1 + α
s |FQ′ |2 . (6.11)

Consequently, after minimizing the moduli potential, we find that a nonzero mass for the

brane scalar with nonzero R charge is generated and it is given by the following general

formula,

m2
Q = K−1

QQ†

∂2V

∂Q∂Q†

∣

∣

∣

Q=0

=
2g2
RM

4
P

s
(t− 1)

r

tM2
P

=
D2 + tV1

1 − 1
2αtV1

1
2r

tM2
P

. (6.12)

We note that the brane scalar mass does not depend on the U(1)R gauge coupling. This

is because the effective interaction between the visible and hidden sectors is suppressed by
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the mass squared of the U(1)R vector multiplet, M2
R = 8g2

RM
2
P . That is, the gauge coupling

dependence is cancelled out by the one of the suppression scale for the U(1)R mediation.

It would be interesting to compare the U(1)R mediation to some relevant results in the

literature on the SUSY mediation via an additional anomalous or non-anomalous U(1)

gauge field [34 – 36].

First we consider the case with the brane D-term domination by setting FQ′ = 0.

Assuming αt|V1| ≪ 1 and ignoring the vacuum energy contribution due to a nonzero F-

term for the S modulus, D2 ≃ −2tV1 and V1 ≃ −2|W |2

M2
P
st

so we require the brane D-term to

be D2 ≃ 4|W |2

M2
P
s
. Then, from eq. (6.12) with FQ′ = 0, the brane scalar mass becomes

m2
Q ≃ r

st

|W |2
M4
P

= rm2
3/2 (6.13)

where use is made of the gravitino mass given by m2
3/2 = eK |W |2

M4
P

= 1
st

|W |2

M4
P

. For the positive

brane scalar mass squared, we require the R charge of the brane scalar to be positive.

After integrating out the U(1)R vector multiplet, the effective operator for generating

the soft mass would be written as
∫

d4θ
g2R
M2

R

W ′
αW

′αQ̃†Q̃ with W ′
α being the superfield

strength for the hidden sector gauge field. We note, however, that from all the known

microscopic models for generating the D-term uplifting potential [35 – 37], such a large

D-term generically gives rise to a very heavy gravitino.

Secondly we take the case with the brane F-term domination for which D = 0. Then,

similarly to the D-term domination case, for αr|V1| ≪ 1, we need the brane F-term to be

|FQ′ |2 ≃ −4stV1 ≃ 8|W |2

M2
P

. Thus, from eq. (6.12) with D = 0, the brane scalar mass becomes

m2
Q ≃ − r

st

|W |2
M4
P

= −rm2
3/2. (6.14)

Thus, the brane scalar mass gets an opposite sign compared to the brane D-term domi-

nation, so the R charge of the brane scalar must be negative for the positive scalar mass

squared. In the F-term domination, the effective operator for generating the soft mass

would be written as
∫

d4θ
g2R
M2

R

Q′†Q′Q̃†Q̃ with Q′ being the hidden sector chiral superfield.8

Therefore, for either brane D- or F-term domination, the tree-level soft mass due to the

U(1)R mediation can be positive for the appropriate R charge assignment so that it domi-

nates over the anomaly mediation. Particularly, when theR charges of sleptons are nonzero,

we can cure the problem of the negative slepton masses in the anomaly mediation [4].

Before ending the section, we also make a remark on the gaugino masses for the

Standard Model gauge group. When the SM gauge fields are localized on the brane, there

is no gaugino mass at the tree level because the brane gauge kinetic term is trivial, i.e.

fW = 1. Thus, one can argue that the gaugino masses are generated at one-loop due to

the anomaly mediation [4]. In this case, the gaugino masses are suppressed by the loop

factor, compared to the gravitino mass or the scalar mass.

8Even in the case that the hidden chiral superfield does not have an R charge, it has a gauge coupling

to the U(1)R vector multiplet as seen from the Kähler potential (5.11).
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7. Conclusion

We have constructed a consistent SUSY action for brane matter multiplets in a 6D chiral

gauged supergravity. Introducing brane chiral multiplets charged under the U(1)R, we

derived the supersymmetric U(1)R coupling to the brane by modifying both the gauge field

strength and the field strength for the KR field together with the necessary modifications

of the fermionic SUSY transformations. We also notify that the modified field strength

for the KR field is consistent with SUSY and U(1)R symmetry only at the expense of

modifying the SUSY and gauge transformations of the KR field with the singular terms,

respectively.

The singular modification of the field strength does not challenge the attempt of find-

ing the meaningful result but rather is necessary for obtaining the consistent 4D effective

action. We showed that after a dimensional reduction to 4D on the SUSY football back-

ground, the obtained low energy effective action with light bulk and brane modes can

be consistently reproduced by the corresponding 4D effective supergravity containing the

U(1)R gauge symmetry. The resulting U(1)R gauge symmetry in the 4D effective theory

is anomalous as the bulk Green-Schwarz term generates the 4D anomalies in the bulk and

on the boundaries. Moreover, the effective scalar potential coming from the U(1)R D-term

stabilizes one of two moduli, i.e. the T modulus, at the SUSY Minkowski vacuum. Due

to the Green-Schwarz mechanism with the gauge flux, the U(1)R gauge symmetry is spon-

taneously broken by eating up the axionic scalar partner of the T modulus, so the mass

of the U(1)R gauge field is of order the 4D Planck scale up to the U(1)R gauge coupling.

A brane scalar with nonzero R charge appears in the U(1)R D-term and the mass of the

brane scalar vanishes at the minimum of the T modulus due to the cancellation between the

R-charge dependent brane-localized mass term and the flux-induced mass term. However,

the S modulus needs to be stabilized for avoiding an unacceptable effect on the equivalence

principle and the cosmology.

For the stabilization of the S modulus, we consider the bulk gaugino condensates in

an extended bulk theory with the product of the U(1)R and non-abelian gauge groups.

Then, since the bulk gauge kinetic function depends linearly on the S modulus, the ef-

fective superpotential for the double gaugino condensates takes a racetrack form for the

S modulus. In the process of the S modulus stabilization, we introduce brane F- and/or

D-term potentials to uplift a negative vacuum energy to zero. Because the scalar potential

coming from the gaugino condensates or the brane D-term depends on the T modulus, after

the S modulus stabilization, the minimum value of the T modulus is shifted from t = 1

that would have been obtained only for the U(1)R D-term. Thus, we obtained a nonzero

soft mass for the brane scalar proportional to its R charge. For this reason, we owe the

obtained SUSY breaking to U(1)R mediation. For the R charge of order one, the scalar soft

mass is of the same order as the gravitino mass. Depending whether brane F- or D-term

dominates in the uplifting potential, the brane scalar soft mass squared can be positive or

negative for a fixed R charge. Therefore, according to the nature of the uplifting potential

coming from the hidden brane, an appropriate R charge assignment for the brane scalar is

required to get a positive scalar soft mass squared.
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We have discussed briefly on the U(1)R anomalies only from the bulk Green-Schwarz

counterterm. Since the integrated 4D U(1)R anomalies in our case are constrained in

the same way as in 4D supergravity, some important developments in the study of the

anomaly-free U(1)R symmetry in 4D supergravity [28] would be applicable to our effective

4D supergravity. The 6D gauged supergravity with the consistent U(1)R gauge symmetry

might have a variety of applications in particle physics and cosmology, for instance, to

consider the D-term inflation [19] and explain the baryon/lepton number conservation [38,

28], the µ problem [39] and the fermion mass hierarchy in the context of the horizontal

U(1) symmetry [40]. We leave the detailed analysis on a realistic model building for one

problem or another as a future work.
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A. Notations and conventions

We use the metric signature (−,+,+,+,+,+) for the 6D metric. The index conventions are

the following: (1) for the Einstein indices we use M,N, · · · = 0, · · · , 5, 6 for the 6D indices,

µ, ν, · · · ,= 0, · · · , 3 for the 4D indices and m,n, · · · = 5, 6 for the internal 2D indices, (2)

for the Lorentz indices we use A,B, · · · = 0, · · · , 5, 6 for the 6D indices, α, β, · · · = 0, · · · , 3
for the 4D indices anda, b, · · · = 5, 6 for the internal 2D indices.

We take the gamma matrices in the locally flat coordinates, satisfying {ΓA,ΓB} =

2ηAB , to be

Γα = σ1 ⊗ γα, Γ5 = σ1 ⊗ γ5, Γ6 = σ2 ⊗ 1, (A.1)

where γ’s are the 4D gamma matrices with γ2
5 = 1 and σ’s are the Pauli matrices with

[σi, σj ] = 2iǫijkσ
k, with i, j, k = 1, 2, 3,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (A.2)

The convention for 4D gamma matrices is that

γα =

(

0 σα

σ̄α 0

)

, γ5 =

(

1 0

0 −1

)

, (A.3)

with σα = (1, σi) and σ̄α = (−1, σi). The chirality projection operators are defined as

PL = (1 + γ5)/2 and PR = (1− γ5)/2. We note that Γα5 = 1⊗ γαγ5, Γα6 = iσ3 ⊗ γα, and

Γ56 = iσ3 ⊗ γ5. In the text, we use the notation, χ̄ = −iχ†Γ0, etc. The curved gamma
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matrices on the other hand are given in terms of the ones in the locally flat coordinates as

ΓM = e MA ΓA where e M
A is the 6D vielbein.

The antisymmetrization of the gamma matrices is defined as

ΓM1M2···Mn = Γ[M1ΓM2 · · ·ΓMn] =
1

n!

∑

p

(−1)pΓM1ΓM2 · · ·ΓMn (A.4)

where
∑

p is the summation over all permutations. The 6D chirality operator is given by

Γ7 = Γ0Γ1 · · ·Γ6 = σ3 ⊗ 1. (A.5)

B. Spin connection

We include the scalar modes in the general warped solution as

ds2 = e−ψW 2ηµνdx
µdxν + eξ(dρ2 + e2(ψ−ξ)a2dθ2). (B.1)

Then, the nonzero vielbein components are given by

eαµ = e−
1

2
ψWδαµ , (B.2)

eam =

(

cos θ − sin θ

sin θ cos θ

)(

e
1

2
ξ 0

0 aeψ−
1

2
ξ

)

. (B.3)

Therefore, the nonzero components of the spin connection are

ωα β =
1

2
(ηαρηβµ∂ρψ − δρβδ

α
µ∂ρψ)dxµ, (B.4)

ωα 5 = cos θ

(

W ′

W
− ψ′

2

)

We−
1

2
(ψ+ξ)δαµdx

µ

−1

2
cos θηαβ∂βξW

−1e
1

2
(ψ+ξ)dρ

− sin θηαβ∂β(ψ − 1

2
ξ)aW−1e

1

2
(3ψ−ξ)dθ, (B.5)

ωα 6 = sin θ

(

W ′

W
− ψ′

2

)

We−
1

2
(ψ+ξ)δαµdx

µ

−1

2
sin θηαβ∂βξW

−1e
1

2
(ψ+ξ)dρ

+ cos θηαβ∂β(ψ − 1

2
ξ)aW−1e

1

2
(3ψ−ξ)dθ, (B.6)

ω5
6 =

[

1 −
(

ψ′ − 1

2
ξ′ +

a′

a

)

aeψ−ξ
]

dθ ≡ ωdθ (B.7)

where prime denotes the derivative with respect to ρ.

We take the case with ξ = ψ for which the shape modulus is decoupled [21]. In order

to determine the modulus coupling of the brane gravitino mass in section 3.3, the following

components of the spin connection contracted with the vielbein, ωABC ≡ eMA ωMBC , were

used in the text,

ωα56 = ω5α6 = 0, (B.8)

ω5α5 = −1

2
∂αψ e

1

2
ψW−1 = ω6α6. (B.9)
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C. The effective action with the delta terms

In this section, we present the details for deriving the effective action from the modified

field strengths with the delta terms.

C.1 The globally well-defined KR field

We decompose the gauge field into the background value and the fluctuation as A = 〈A〉+A.

The gauge field has different background values in the different patches, being connected by

a background gauge transformation, δΛ0
〈A〉 = dΛ0, while δΛ0

A = 0. Likewise, the gauge

field strength is also decomposed to F = dA = 〈F 〉 + dA ≡ 〈F 〉 + F .

Under the background gauge transformation, the KR field transforms as δΛ0
Bmn =

Λ0(−1
2Fmn+ξǫmn

δ2(y)
e2

), δΛ0
Bmµ = −1

2Λ0Fmµ and δΛ0
Bµν = −1

2Λ0Fµν , so it is not globally

well-defined.9 That is, the background gauge transformation is not of the exact form. The

gauge transformation of the derivative of B is given by

δΛ0
dB = −1

2
dΛ0 ∧ F

= −1

2
dΛ0 ∧ (〈F 〉 + dA)

= −1

2
dΛ0 ∧ dA =

1

2
d(dΛ0 ∧ A) =

1

2
δΛ0

d(〈A〉 ∧ A) (C.1)

where use is made of dΛ0 ∧ 〈F 〉 = 0. So, we find that the singular term in the background

gauge transform of the KR field does not affect the gauge transform of the derivative of B.

Thus, we define the globally well-defined KR field as in the case without the delta term as

B = B − 1

2
〈A〉 ∧ A. (C.2)

Then, we can show that δΛ0
dB = d(δΛ0

B) = 0. In this case, the redefined B is globally

well-defined if there is a solution for a one-form C satisfying

δBmn = Λ0

(

− 1

2
Fmn + ξǫmn

δ2(y)

e2

)

− 1

2
(dΛ0 ∧A)mn + (dC)mn = 0, (C.3)

δBmµ = −1

2
Λ0Fmµ −

1

2
(dΛ0 ∧ A)mµ + (dC)mµ = 0, (C.4)

and

δBµν = −1

2
Λ0Fµν −

1

2
(dΛ0 ∧A)µν + (dC)µν = 0. (C.5)

Now we consider the general gauge transformation of the derivative of B as

δ(∂µBmn+∂mBnµ+∂nBµm) = ∂µΛ

(

−〈Fmn〉+ξǫmn
δ2(y)

e2

)

− 1

2
∂µΛ(∂mAn−∂nAm). (C.6)

Thus, we obtain

δBmn = −Λ〈F̂mn〉. (C.7)

9Compared to ref. [22], we also have a singular delta term in the gauge transform.
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Moreover, the derivative of the redefined KR field is written in terms of the gauge field

background as

dB = dB − 1

2
〈F 〉 ∧ A +

1

2
〈A〉 ∧ dA. (C.8)

Therefore, we can rewrite the decomposed field strength for the KR field as

G = dB +
1

2
〈F 〉 ∧ A +

1

2
dA ∧ 〈A〉

= dB + 〈F 〉 ∧ A. (C.9)

That is, in terms of the components, it is written as

Gµmn = ∂µBmn + ∂mBnµ − ∂nBmµ + 〈Fmn〉Aµ. (C.10)

C.2 The effective matter coupling of the globally well-defined KR field

We present the details on the effective action coming from the modified field strength for

the KR field.

For the globally well-defined KR field B, the modified field strength for the KR field

is given by

Ĝµmn = ∂µBmn + ∂mBnµ − ∂nBmµ + 〈Fmn〉Aµ +
(

Jµ − ξAµ

)

ǫmn
δ2(y)

e2

= ∂µBmn + ∂mBnµ − ∂nBmµ + 〈F̂mn〉Aµ + Jµǫmn
δ2(y)

e2
. (C.11)

Restricting ourselves to the football SUSY solution, we assume that the solutions are

separable as

ds2 = e−ψ(x)gµν(x)dx
µdxν + eψ(x)ds22, (C.12)

Fmn = qǫmn, φ = f(x) (C.13)

where ds22 and ǫmn are the 2D metric and volume form for the static solution. Then, from

the equation for the KR field,

∂M (
√−geφĜMNP ) = 0, (C.14)

we obtain the solution,

Ĝµmn = e3ψ−fCµǫmn (C.15)

with

∂mCµ = 0, ∂µ(
√−gCµ) = 0. (C.16)

Taking the ansätze, Bmµ = −ǫmn∂nWµ and Bmn = −b(x)ǫmn, eq. (C.15) with (C.11)

becomes

�
(2)Wµ = −∂µb+ qAµ + Jµ

δ2(y)

e2
− e3ψ−fCµ. (C.17)

Due to the Stokes theorem for compact dimensions, integration of the left-hand side over

the extra dimensions must vanish. Thus, we obtain

e3ψ−fCµ = −∂µb+ qAµ +
Jµ
V

(C.18)
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where the volume of the extra dimensions V =
∫

d2ye2. Therefore, after integrating out

the 4D vector component of the globally well-defined KR field, the kinetic term for the KR

field with the modified field strength becomes

LKR = −
∫

d2ye6
1

4
eφĜµmnĜ

µmn

= −e4
V

2
e−2ψ+f

(

∂µb− qAµ −
Jµ
V

)2

. (C.19)

This result is used in the text in section 5.1. We can see that there appears a coupling of

the gauge boson to the axion, which is proportional to the flux q. This is nothing but a

spontaneously breakdown of the U(1)R gauge theory by Green-Schwarz mechanism.

C.3 The effective action for the U(1)R D-term for a brane scalar

Next we also consider the details on the effective action coming from the modified gauge

field strength.

We first consider the Bianchi identity (3.20) for the modified gauge field strength as

∂µF̂mn + ∂mFnµ − ∂nFmµ = −rg∂µ|Q|2 δ
2(y)

e2
ǫmn. (C.20)

After decomposing the field strength into the background value and the fluctuation, the

modified field strength is given by

F̂mn = 〈F̂mn〉 + Fmn − rg|Q|2 δ
2(y)

e2
ǫmn. (C.21)

Inserting the above expression into the Bianchi identity, we get the Bianchi identity for the

fluctuation as

∂µFmn + ∂mFnµ − ∂nFmµ = 0. (C.22)

In order to cancel the problematic delta term proportional to |Q|2 in F̂mn, we take the

solution for the fluctuation as

Fmn = rg|Q|2
(

δ2(y)

e2
− 1

V

)

ǫmn. (C.23)

Here the bulk constant term comes from the requirement that integrating the left-hand

side over the extra dimensions for the globally well-defined fluctuation Am vanishes. We

can also see that for the given solution for Am the Bianchi identity (C.22) can be solved

for the globally well-defined Fmµ.
Then, inserting the solution (C.23) into eq. (C.21) with 〈F̂mn〉 = qǫmn, we obtain the

modified field strength as

F̂mn =

(

q − rg|Q|2
V

)

ǫmn. (C.24)

Therefore, after integrating over the extra dimensions, the bulk gauge kinetic term for the

modified field strength becomes

LF = −1

4

∫

d2ye6 e
1

2
φF̂mnF̂

mn

= −e4
V

2
e−3ψ+ 1

2
f

(

q − rg|Q|2
V

)2

. (C.25)
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This term is part of the U(1)R D-term in the 4D effective supergravity that is used in the

text in section 5.1.
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